Research on Short-Term Traffic Flow Combination Prediction Based on CEEMDAN and Machine Learning

Author:

Wu XinyeORCID,Fu Shude,He Zujie

Abstract

Traffic flow has the characteristics of randomness, complexity, and nonlinearity, which brings great difficulty to the prediction of short-term traffic flow. Based on considering the advantages and disadvantages of various prediction models, this paper proposes a short-term traffic flow prediction model based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and machine learning. Firstly, CEEMDAN is used to decompose the original traffic flow time series to obtain multiple component sequences with huge complexity differences. In order to measure the complexity of each component sequence, the permutation entropy of each component sequence is calculated. According to the permutation entropy, the component sequence is divided into three types: high-frequency components, intermediate-frequency components, and low-frequency components. Secondly, according to the different volatility of the three types of components, the high-frequency components, intermediate-frequency components, and low-frequency components are predicted by long short-term memory (LSTM), support vector machine (SVM), and k-nearest neighbor (KNN), respectively. Finally, the accurate traffic flow prediction value can be obtained by the linear superposition of the prediction results of the three component prediction models. Through a measured traffic flow data, the combined model proposed in this paper is compared to the binary gray wolf algorithm–long short-term memory (BGWO-LSTM) model, the improved gray wolf algorithm–support vector machine (IGWO-SVM) model, and the KNN model. The mean square error (MSE) of the combined model is less than that of the BGWO-LSTM model, the IGWO-SVM model, and the KNN model by 41.26, 44.98, and 57.69, respectively. The mean absolute error (MAE) of the combined model is less than that of the BGWO-LSTM model, the IGWO-SVM model, and the KNN model by 2.33, 2.44, and 2.70, respectively. The root mean square error (RMSE) of the combined model is less than that of the BGWO-LSTM model, the IGWO-SVM model, and the KNN model by 2.89, 3.11, and 3.80, respectively. The three error indexes of the combined model are far smaller than those of the other single models. At the same time, the decision coefficient (R2) of the combined model is also closer to 1 compared to the other models, indicating that the prediction result of the combined model is the closest to the actual traffic flow.

Funder

National Natural Science Foundation of China

Open Fund Project of the Transportation Infrastructure Intelligent Management and Maintenance Engineering Technology Center of Xiamen City

Project of the 2011 Collaborative Innovation Center of Fujian Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. Chan, K.Y., Khadem, S., and Dillon, T.S. (2012, January 10–15). Optimization of neural network configurations for short-term traffic flow forecasting using orthogonal design. Proceedings of the World Congress on Computational Intelligence, Brisbane, Australia.

2. MRF model based real-time traffic flow prediction with support vector regression;Kim;Electron. Lett.,2017

3. Fu, Y.Q. (2016). Short-Term Traffic Flow Analysis and Prediction, Nanjing University of Information Science and Technology.

4. A New Approach to Linear Filtering and Prediction Theory;Kalman;J. Basic Eng.,1960

5. Dynamic prediction of traffic volume through Kalman filtering theory;Okutani;Transp. Res. Part B Methodol.,1984

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Short-Term Traffic Flow Forecasting Method Based on Secondary Decomposition and Conventional Neural Network–Transformer;Sustainability;2024-05-28

2. Improved traffic flow estimation based on integrated learning methods;Eighth International Conference on Electromechanical Control Technology and Transportation (ICECTT 2023);2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3