Abstract
Advancements in deep learning and vision-based activity recognition development have significantly improved the safety, continuous monitoring, productivity, and cost of the earthwork site. The construction industry has adopted the CNN and RNN models to classify the different activities of construction equipment and automate the construction operations. However, the currently available methods in the industry classify the activities based on the visual information of current frames. To date, the adjacent visual information of current frames has not been simultaneously examined to recognize the activity in the construction industry. This paper proposes a novel methodology to classify the activities of the excavator by processing the visual information of video frames adjacent to the current frame. This paper follows the CNN-BiLSTM standard deep learning pipeline for excavator activity recognition. First, the pre-trained CNN model extracted the sequential pattern of visual features from the video frames. Then BiLSTM classified the different activities of the excavator by analyzing the output of the pre-trained convolutional neural network. The forward and backward LSTM layers stacked on help the algorithm compute the output by considering previous and upcoming frames’ visual information. Experimental results have shown the average precision and recall to be 87.5% and 88.52%, respectively.
Funder
National Research Foundation of Korea
Higher Education Commission of Pakistan
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献