Automatic recognition of excavator working cycles using supervised learning and motion data obtained from inertial measurement units (IMUs)

Author:

Molaei AmirmasoudORCID,Kolu Antti,Lahtinen Kalle,Geimer MarcusORCID

Abstract

AbstractThis paper proposes an automatic method for excavator working cycle recognition using supervised classification methods and motion information obtained from four inertial measurement units (IMUs) attached to moving parts of an excavator. Monitoring and analyzing tasks that have been performed by heavy-duty mobile machines (HDMMs) are significantly required to assist management teams in productivity and progress monitoring, efficient resource allocation, and scheduling. Nevertheless, traditional methods depend on human observations, which are costly, time-consuming, and error-prone. There is a lack of a method to automatically detect excavator major activities. In this paper, a data-driven method is presented to identify excavator activities, including loading, trenching, grading, and idling, using motion information, such as angular velocities and joint angles, obtained from moving parts, including swing body, boom, arm, and bucket. Firstly, a dataset lasting 3 h is collected using a medium-rated excavator. One experienced and one inexperienced operator performed tasks under different working conditions, such as different types of material, swing angle, digging depth, and weather conditions. Four classification methods, including support vector machine (SVM), k-nearest neighbor (KNN), decision tree (DT), and naive Bayes, are off-line trained. The results show that the proposed method can effectively identify excavator working cycles with a high accuracy of 99%. Finally, the impacts of parameters, such as time window, overlapping configuration, and feature selection methods, on the classification accuracy are comprehensively analyzed.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3