Retinal Nerve Fiber Layer Analysis Using Deep Learning to Improve Glaucoma Detection in Eye Disease Assessment

Author:

Prananda Alifia Revan,Frannita Eka Legya,Hutami Augustine Herini Tita,Maarif Muhammad RifqiORCID,Fitriyani Norma Latif,Syafrudin MuhammadORCID

Abstract

Recently, the development of a rapid detection approach for glaucoma has been widely proposed to assist medical personnel in detecting glaucoma disease thanks to the outstanding performance of artificial intelligence. In several glaucoma detectors, cup-to-disc ratio (CDR) and disc damage likelihood scale (DDLS) play roles as the major objects that are used to analyze glaucoma. However, using CDR and DDLS is quite difficult since every person has different characteristics (shape, size, etc.) of the optic disc and optic cup. To overcome this issue, we proposed an alternative way to detect glaucoma disease by analyzing the damage to the retinal nerve fiber layer (RNFL). Our proposed method is divided into two processes: (1) the pre-treatment process and (2) the glaucoma classification process. We started the pre-treatment process by removing unnecessary parts, such as the optic disc and blood vessels. Both parts are considered for removal since they might be obstacles during the analysis process. For the classification stages, we used nine deep-learning architectures. We evaluated our proposed method in the ORIGA dataset and achieved the highest accuracy of 92.88% with an AUC of 89.34%. This result is improved by more than 15% from the previous research work. Finally, it is expected that our model could help improve eye disease diagnosis and assessment.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3