The classification of eye diseases from fundus images based on CNN and pretrained models

Author:

Benbakreti SamirORCID,Benbakreti Soumia,Ozkaya Umut

Abstract

Visual impairment affects more than a billion people worldwide due to insufficient care or inadequate vision screening. Computer-aided diagnosis using deep neural networks is a promising approach, it can analyse and process retinal fundus images, providing valuable reference data for doctors in clinical diagnosis or screening. This study aims to achieve an accurate classification of fundus images, including images of healthy patients as well as those with diabetic retinopathy, cataracts, and glaucoma, using a convolutional neural network (CNN) architecture and several pretrained models (AlexNet, GoogleNet, ResNet18, ResNet50, YOLOv3, and VGG 19). To enhance the training process, a mirror effect technique was applied to augment the volume of data. The experimental study resulted in very satisfactory outcomes, with the GoogleNet model paired with the SGDM optimiser achieving the highest accuracy (92.7 %).

Publisher

Czech Technical University in Prague - Central Library

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3