Study of the Effect of an Environmentally Friendly Flood Risk Reduction Approach on the Oman Coastlines during the Gonu Tropical Cyclone (Case Study: The Coastline of Sur)

Author:

Banan-Dallalian Masoud,Shokatian-Beiragh Mehrdad,Golshani Aliasghar,Mojtahedi Alireza,Lotfollahi-Yaghin Mohammad Ali,Akib ShatirahORCID

Abstract

Tropical cyclones may be destructive in the coastal region, such as the Gonu tropical cyclone, which affected the Arabian Peninsula and parts of southern Iran in 2007. In this study, a coupled MIKE 21/3 HD/SW (hydrodynamic/spectral wave) model was used to simulate the inland flooding inside the Sur port during the Gonu tropical cyclone. The MIKE 21 Cyclone Wind Generation (CWG) tool was utilized to generate the cyclone’s wind and pressure field. The required input data were obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) and imported into the CWG tool. In this study, the wind and pressure fields were compared between the analytical vortex model and European Centre for Medium-Range Weather Forecasts (ECMWF) data during the Gonu cyclone passage. Moreover, by developing a new model, artificial Mangroves’ effect on inland flooding was investigated. The results show that, contrary to the ECMWF data, the analytical vortex models well captured the storm event’s wind and pressure field. Furthermore, the flood hazard is calculated based on the inundation depth, flow velocity, and area’s vulnerability. The flood hazard map shows that 5% of the coast is at high-risk, 49% is at medium-risk, and 46% is at low-risk class in the Sur port. By applying Mangroves as flood risk reduction, the high-risk area is almost completely removed. However, medium and low-risk zones increase by 50% and 50%, respectively. This information could be helpful in disaster risk reduction and coastal management in the future.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3