Particle Swarm Optimization for Optimal Frequency Response with High Penetration of Photovoltaic and Wind Generation

Author:

Alvarez-Alvarado Manuel S.,Rengifo JohnnyORCID,Gallegos-Núñez Rommel M.,Rivera-Mora José G.,Noriega Holguer H.,Velasquez WashingtonORCID,Donaldson Daniel L.ORCID,Rodríguez-Gallegos Carlos D.

Abstract

As the installation of solar-photovoltaic and wind-generation systems continue to grow, the location must be strategically selected to maintain a reliable grid. However, such strategies are commonly subject to system adequacy constraints, while system security constraints (e.g., frequency stability, voltage limits) are vaguely explored. This may lead to inaccuracies in the optimal placement of the renewables, and thus maximum benefits may not be achieved. In this context, this paper proposes an optimization-based mathematical framework to design a robust distributed generation system, able to keep system stability in a desired range under system perturbance. The optimum placement of wind and solar renewable energies that minimizes the impact on system stability in terms of the standard frequency deviation is obtained through particle swarm optimization, which is developed in Python and executed in PowerFactory-DIgSILENT. The results reveal that the proposed approach has the potential to reduce the influence of disturbances, enhancing critical clearance time before frequency collapse and supporting secure power system operation.

Funder

Escuela Superior Politécnica del Litoral

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3