Superheated Steam Spray Drying as an Energy-Saving Drying Technique: A Review

Author:

Sobulska MariiaORCID,Wawrzyniak PawelORCID,Woo Meng Wai

Abstract

Drying is an extremely energy-intensive process. Superheated steam as a drying medium can improve the energy efficiency of the drying processes. In superheated steam drying, waste heat can be recovered by condensing the exhaust steam or raising its specific enthalpy. Spray drying is widely used in industry, even though its energy efficiency is often low. Substitution of air by superheated steam as a drying medium in a spray dryer may reduce the energy consumption of the drying process by 20–30%; moreover, if excess steam generated by moisture evaporation is upgraded to a higher temperature level and reused for drying, the energy demand could be decreased by even 80%. A literature review showed that superheated steam spray drying was successfully applied for both thermally resistant and a wide range of thermally sensitive materials. Superheated steam drying gives a number of advantages in terms of product properties, i.e., higher particle porosity due to rapid moisture evaporation results in improved powder rehydration properties. Additionally, steam drying may be applied for in situ particle crystallization. Taking into account the advantages of superheated steam drying and the potential application of this technology in spray drying systems, there is a great need for further research in this field. This literature review aimed to present an energy-saving solution, i.e., superheated steam spray drying process, showing its advantages and potential applications, followed by drying kinetics, providing analysis of the research papers on experimental studies as well as mathematical modeling of this drying technique.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3