System COP of Ejector-Based Ground-Source Heat Pumps

Author:

El Hassan MouhammadORCID

Abstract

Compared to mechanical compressors, ejector-based refrigeration systems can make direct use of many forms of thermal energy, including waste heat, solar thermal, or biogases. It is known that SE systems have a lower thermal efficiency compared to mechanical compressors because of their lower performance at high compression ratios. In the present work, binary fluid ejector heat pumps with high efficiency are presented based on a proper selection of the binary fluids and the ejector geometry for specific operating conditions of a ground-source heat pump cooling system (GSHP). The existing literature on ejector-based refrigeration systems considers the thermal COP and does not account for many energy losses across the system. In the present paper, the system COP of an ejector-based GSHP that accounts for all energy exchange processes is determined. A method for the calculation of the work done by the boiler feed pump, the refrigeration expansion valve, and the ground loop circulation pump is presented. The influence of the condenser temperature on the entrainment process and the system COP is also discussed. The estimated overall system COP for the three top-ranked binary fluid candidates under various operating conditions was found to range from 1.55 to 3.06.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. El Hassan, M. (2022). Numerical Characterization of the Flow Dynamics and COP Estimation of a Binary Fluid Ejector ground Source Heat Pump Cooling System. Fluids, 7.

2. Investigation of the effects of the jet nozzle geometry and location on the performance of supersonic fluid ejectors;Energy Rep.,2022

3. Investigation of thermo-physical fluid properties effect on binary fluid ejector performance;Energy Rep.,2020

4. Numerical Investigation of the Flow Dynamics inside Supersonic Fluid Ejector;Arab. J. Sci. Eng.,2019

5. El Hassan, M., Gubanov, A., May, W., and Martinuzzi, R. (2014, January 11–12). Numerical investigation of the flow dynamics of a supersonic fluid ejector. Proceedings of the International Conference on Heat Transfer and Fluid Flow, Prague, Czech Republic.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3