Numerical Characterization of the Flow Dynamics and COP Estimation of a Binary Fluid Ejector Ground Source Heat Pump Cooling System

Author:

El Hassan MouhammadORCID

Abstract

Ejector-based refrigeration systems can make direct use of many forms of thermal energy, such as solar thermal, waste heat, biogas, or natural gas. The present paper describes the estimation of the thermal coefficient of performance (COP) of a binary fluid ejector ground source heat pump (BFE GSHP) cooling system. A method for fluid selection was defined based on the favorable thermo-physical properties of the working fluids. A short list of fluid pairs were selected based on their favorable properties for the BFE GSHP cooling system. Computational Fluid Dynamics (CFD) investigation was conducted for the selected fluid pairs and a suitable ejector geometry is proposed for the high compression ratios encountered in the GSHP applications. The mixing between primary and secondary fluids was investigated using physical analysis of the CFD results. The effect of the fluids’ thermo-physical properties on the system performance was also discussed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference21 articles.

1. Numerical investigation of the flow dynamics of a supersonic fluid ejector;El Hassan;Proceedings of the International Conference on Heat Transfer and Fluid Flow,2014

2. Numerical investigation of the flow dynamics inside single fluid and binary fluid ejectors

3. An experimental investigation of a steam ejector refrigerator: the analysis of the pressure profile along the ejector

4. Novel ejector cooling technologies using binary fluids;Buyadgie;Proceedings of the 9th International Conference on Sustainable Energy Technologies,2010

5. Results of an experimental study of an advanced jet-pump refrigerator operating with R245fa

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3