Optimum Design of an Electric Vehicle Charging Station Using a Renewable Power Generation System in South Korea

Author:

Ihm Jieun1,Amghar Bilal23ORCID,Chun Sejin4,Park Herie1

Affiliation:

1. Department of Electrical Engineering, Dong-A University, Busan 49315, Republic of Korea

2. Institut de Recherche en Constructibilité, Université Paris-Est, ESTP Paris, 28 Avenue Président Wilson, 94234 Cachan, France

3. QUARTZ—Laboratoire QUARTZ ENSEA, 95014 Cergy-Pontoise, France

4. Department of Computer Engineering and Artificial Intelligence, Dong-A University, Busan 49315, Republic of Korea

Abstract

In the context of global warming and fossil fuel depletion, electric vehicles (EVs) have become increasingly popular for reducing both carbon emissions and fossil fuel consumption. However, as the demand for EV charging power rises along with the expansion of EVs, conventional power plants require more fuel, and carbon emissions increase. This suggests that the goal of promoting EV adoption to mitigate climate change and reduce reliance on fossil fuels may face significant challenges. Therefore, there is a need to adopt renewable energy generation for EV charging stations to maximize the effectiveness of EV distribution in an eco-friendly way. This paper aims to propose an optimal renewable energy generation system for an EV charging station, with a specific focus on the use of an actual load profile for the station, the consideration of carbon emissions and economic evaluation, and the study of a specific case location in Korea. As a case study, an EV charging station in Korea was selected, and its renewable energy fractions (REF) of 0%, 25%, 50%, 75%, and 100% were considered for comparison of carbon emissions and economic evaluation with the help of HOMER software. In addition, the system with 25% REF was analyzed to find the best operating strategy considering the climate characteristics of the case site. The results show that the system configuration of PV/ESS is the most economical among all the REF cases, including PV, WT, and ESS, due to the meteorological characteristics of the site, and that the system with REF below 25% is the most optimal in economic terms and carbon emissions.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3