A Simulation Modeling Approach for the Techno-Economic Analysis of the Integration of Electric Vehicle Charging Stations and Hybrid Renewable Energy Systems in Tourism Districts

Author:

Abdelhady Suzan1ORCID,Shaban Ahmed23ORCID

Affiliation:

1. Electrical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum 63514, Egypt

2. Mechanical and Industrial Engineering Department, College of Engineering, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman

3. Mechanical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum 63514, Egypt

Abstract

Electric vehicles (EVs) play a crucial role in tertiary sectors due to their eco-friendliness and sustainability when powered by clean energy. Integrating EV charging stations with renewable energy systems is essential to alleviate energy issues and grid pressure. Exploring this integration’s feasibility is imperative for sustainable transportation. This study aims to provide a clear approach and methodology for examining the potential of integrating renewable energy technologies with EV charging stations at the district level. Additionally, the study investigates the energy, economic, and environmental benefits of an integrated system comprising photovoltaic/wind turbines (PV/WTs) connected to the electricity grid to meet the energy demand of a tertiary district consisting of five hotels in Egypt. Through the development of a simulation model, the paper verifies whether the proposed energy system can meet the district’s energy demand. In addition, the simulation model has been employed to conduct a sensitivity analysis for investigating the impact of different charging rates on economic feasibility. The results indicate that a hybrid renewable energy system (HRES) integrated with an EV charging station can effectively relieve pressure on the electricity grid and provide electricity at competitive prices compared to the national grid. Moreover, the proposed energy system significantly reduces environmental emissions by up to 510 tons of CO2 per year and has the potential to decrease fossil fuel usage by 248 tons per year. Sensitivity analysis highlights the significant impact of charging prices on project profitability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3