Exploring an Integrated System for Urban Stormwater Management: A Systematic Literature Review of Solutions at Building and District Scales

Author:

Chen Yu1ORCID,Gaspari Jacopo1ORCID

Affiliation:

1. Department of Architecture, University of Bologna, Via Risorgimento 2, 40136 Bologna, Italy

Abstract

Climate change has aggravated the frequency and severity of extreme weather events, particularly in flood-related hazards. Cities nowadays face significant challenges in stormwater management from frequent heavy rainfalls. Traditional urban drainage systems can no longer cope with large amounts of surface runoff; cities are searching for new ways to deal with urban stormwater. Green roofs and other nature-based solutions have been widely used for stormwater management by combining water purification and retention functions but have not yet fully solved the flood problems. This article aims to (1) explore the different aspects of urban water management, particularly the urban stormwater topic, and (2) identify the existing solutions and discuss the potential and barriers to integrated solutions implementation. By introducing the concept of four domains and finding the overlapping area to investigate, we analyzed different solutions to reduce rainwater runoff from the roof and ground level, aiming at building and district scales. This paper proves that further research direction could constitute an integrated system to work together for urban stormwater management.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference101 articles.

1. United Nations, Department of Economic and Social Affairs, Population Division (2019). World Population Prospects 2019: Highlights, United Nations.

2. Extreme Weather Impacts of Climate Change: An Attribution Perspective;Clarke;Environ. Res. Clim.,2022

3. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

4. A Threefold Rise in Widespread Extreme Rain Events over Central India;Roxy;Nat. Commun.,2017

5. Frequency of Extreme Precipitation Increases Extensively with Event Rareness under Global Warming;Myhre;Sci. Rep.,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3