Extreme weather impacts of climate change: an attribution perspective

Author:

Clarke BenORCID,Otto FriederikeORCID,Stuart-Smith Rupert,Harrington LukeORCID

Abstract

Abstract Extreme event attribution aims to elucidate the link between global climate change, extreme weather events, and the harms experienced on the ground by people, property, and nature. It therefore allows the disentangling of different drivers of extreme weather from human-induced climate change and hence provides valuable information to adapt to climate change and to assess loss and damage. However, providing such assessments systematically is currently out of reach. This is due to limitations in attribution science, including the capacity for studying different types of events, as well as the geographical heterogeneity of both climate and impact data availability. Here, we review current knowledge of the influences of climate change on five different extreme weather hazards (extreme temperatures, heavy rainfall, drought, wildfire, tropical cyclones), the impacts of recent extreme weather events of each type, and thus the degree to which various impacts are attributable to climate change. For instance, heat extremes have increased in likelihood and intensity worldwide due to climate change, with tens of thousands of deaths directly attributable. This is likely a significant underestimate due to the limited availability of impact information in lower- and middle-income countries. Meanwhile, tropical cyclone rainfall and storm surge height have increased for individual events and across all basins. In the North Atlantic basin, climate change amplified the rainfall of events that, combined, caused half a trillion USD in damages. At the same time, severe droughts in many parts of the world are not attributable to climate change. To advance our understanding of present-day extreme weather impacts due to climate change developments on several levels are required. These include improving the recording of extreme weather impacts around the world, improving the coverage of attribution studies across different events and regions, and using attribution studies to explore the contributions of both climate and non-climate drivers of impacts.

Funder

Natural Environment Research Council

Horizon 2020 Framework Programme

New Zealand MBIE Endeavour Fund Whakahura programme

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3