An Ultrasound Tomography Method for Monitoring CO2 Capture Process Involving Stirring and CaCO3 Precipitation

Author:

Koulountzios PanagiotisORCID,Aghajanian SoheilORCID,Rymarczyk TomaszORCID,Koiranen Tuomas,Soleimani Manuchehr

Abstract

In this work, an ultrasound computed tomography (USCT) system was employed to investigate the fast-kinetic reactive crystallization process of calcium carbonate. USCT measurements and reconstruction provided key insights into the bulk particle distribution inside the stirred tank reactor and could be used to estimate the settling rate and settling time of the particles. To establish the utility of the USCT system for dynamical crystallization processes, first, the experimental imaging tasks were carried out with the stirred solid beads, as well as the feeding and stirring of the CaCO3 crystals. The feeding region, the mixing process, and the particles settling time could be detected from USCT data. Reactive crystallization experiments for CO2 capture were then conducted. Moreover, there was further potential for quantitative characterization of the suspension density in this process. USCT-based reconstructions were investigated for several experimental scenarios and operating conditions. This study demonstrates a real-time monitoring and fault detection application of USCT for reactive crystallization processes. As a robust noninvasive and nonintrusive tool, real-time signal analysis and reconstruction can be beneficial in the development of monitoring and control systems with real-world applications for crystallization processes. A diverse range of experimental studies shown here demonstrate the versatility of the USCT system in process application, hoping to unlock the commercial and industrial utility of the USCT devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3