Abstract
In order to solve the problem of difficult sintering and high brittleness of B4C-based ceramics, B4C@ZrB2-TiB2 composite powder was synthesized by molten salt method, and B4C–(Zr, Ti)B2 composite ceramics were successfully prepared by spark plasma sintering. The effects of different raw material ratios on the composition, microstructure, and mechanical properties of the prepared composite ceramics were characterized by XRD, XPS, SEM, and TEM. The results show that ZrB2 and TiB2 were grown on the surface of B4C by template mechanism to form a dense nanocrystalline coating, and the original surface of B4C was exposed gradually with the decrease of the ratio of metal powder. When the composite powders were sintered at 1700 °C, ZrB2 and TiB2 formed a solid solution, which can refine grains and improve strength. When the raw material ratio is n(B4C): n(Zr): n(Ti) = 12:1:1, the composite ceramics have excellent comprehensive properties, the Vickers hardness reaches 41.2 GPa.
Funder
the Natural Science Foundation of Hubei Province
the National Natural Science Foundation of China
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献