Effect of Different Precipitation Routes of Fe2Hf Laves Phase on the Creep Rate of 9Cr-Based Ferritic Alloys

Author:

Kobayashi SatoruORCID,Hara ToruORCID

Abstract

We performed creep tests for three types of Fe-9Cr-Hf alloys with a ferritic matrix w/o Fe2Hf Laves phase particles formed by two precipitation routes: (1) with fine Fe2Hf particles formed by the conventional precipitation route (hereafter the particles are called CP particles), namely formed in the α-ferrite matrix after γ-austenite → α-ferrite phase transformation; (2) with fine Fe2Hf particles formed by interphase precipitation (hereafter called IP particles) during δ-ferrite → γ-austenite phase transformation before γ → α phase transformation and (3) without Laves phase particles. CP particles were found to be effective in reducing the creep rates from the transient creep regime to the early stage of a slowly accelerating creep regime but were coarsened after the creep tests. IP particles were less effective in reducing the creep rate in the early creep stages but showed a higher stability against particle coarsening than CP particles in the creep tests, suggesting their effectiveness in delaying the recovery and recrystallization processes in the matrix and thereby retarding the onset of a rapid creep acceleration and creep rupture. The effects of the different precipitation routes are discussed based on the results obtained.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference16 articles.

1. Key World Energy Statistics 2020 IEAhttps://www.iea.org/reports/key-world-energy-statistics-2020

2. Advanced Power Plant Flexibility-OECD/IEAhttps://www.iea.org/reports/status-of-power-system-transformation-2018

3. Advances in Physical Metallurgy and Processing of Steels. History of Power Plants and Progress in Heat Resistant Steels.

4. Microstructural degradation of Gr.91 steel during creep under low stress

5. Phase diagrams of binary iron alloys, Monograph Series on Alloy Phase Diagrams Vol. 9;Okamoto;ASM Int.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3