Determination of Phase Equilibria among δ-Fe, γ-Fe and Fe2M Phases in Fe-Cr-M (M: Hf, Ta) Ternary Systems

Author:

Yuan Zhetao,Kobayashi SatoruORCID

Abstract

Phase equilibria among δ-Fe, γ-Fe, and Fe2M phases in the Fe-Cr-M (M: Hf, Ta) ternary systems were determined using bulk alloys heat-treated at high temperatures. The final goal of this study is to develop novel ferritic heat resistant steels strengthened by precipitation of Fe2M phase on the eutectoid type reaction path: δ → γ + Fe2M. The phases present in heat-treated samples were identified by microstructural characterization and X-ray diffraction pattern analysis. The chemical compositions of the phases were analyzed by energy dispersive spectroscopy. A pseudo-eutectoid trough (δ → γ + Fe2M) exists at ~1220 °C at a Hf content of 0.1% and at ~1130 °C at a Ta content of 0.6% on the vertical section at a Cr content of 9.5% in each ternary system, respectively. A thermodynamic calculation with a database that reflects reported binary phase diagrams and the present study indicates that an increase in the Cr content decreases the temperature and the Hf/Ta contents of the pseudo-eutectoid troughs. The determined phase equilibria suggest that the supersaturation of Hf/Ta for the formation of γ phase is higher in the Hf doped system than in the Ta doped system, which is probably an origin of a much slower kinetics of precipitation on the eutectoid path in the latter system.

Funder

Japan Society for the Promotion of Science

JFE 21st Century Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference17 articles.

1. Key World Energy Statistics 2020 IEAhttps://www.iea.org/reports/key-world-energy-statistics-2020

2. Advanced Power Plant Flexibility-OECD/IEAhttps://www.iea.org/reports/status-of-power-system-transformation-2018

3. Advances in Physical Metallurgy and Processing of Steels. History of Power Plants and Progress in Heat Resistant Steels.

4. Microstructural degradation of Gr.91 steel during creep under low stress

5. Phase Diagrams of Binary Iron Alloys, Monograph Series on Alloy Phase Diagrams;Okamoto,1993

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3