An Improved Rectifier Circuit for Piezoelectric Energy Harvesting from Human Motion

Author:

Edla Mahesh,Lim Yee YanORCID,Padilla Ricardo Vasquez,Deguchi Mikio

Abstract

Harvesting energy from human motion for powering small scale electronic devices is attracting research interest in recent years. A piezoelectric device (PD) is capable of harvesting energy from mechanical motions, in the form of alternating current (AC) voltage. The AC voltage generated is of low frequency and is often unstable due to the nature of human motion, which renders it unsuitable for charging storage device. Thus, an electronic circuit such as a full bridge rectifier (FBR) is required for direct current (DC) conversion. However, due to forward voltage loss across the diodes, the rectified voltage and output power are low and unstable. In addition, the suitability of existing rectifier circuits in converting AC voltage generated by PD as a result of low frequency human motion induced non-sinusoidal vibration is unknown. In this paper, an improved H-Bridge rectifier circuit is proposed to increase and to stabilise the output voltage. To study the effectiveness of the proposed circuit for human motion application, a series of experimental tests were conducted. Firstly, the performance of the H-Bridge rectifier circuit was studied using a PD attached to a cantilever beam subject to low frequency excitations using a mechanical shaker. Real-life testing was then conducted with the source of excitation changed to a human performing continuous cycling and walking motions at a different speed. Results show that the H-Bridge circuit prominently increases the rectified voltage and output power, while stabilises the voltage when compared to the conventional FBR circuit. This study shows that the proposed circuit is potentially suitable for PEH from human motion.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3