Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations

Author:

Piyarathna Iresha Erangani1ORCID,Thabet Ahmed Mostafa2,Ucgul Mustafa1ORCID,Lemckert Charles1ORCID,Lim Yee Yan3,Tang Zi Sheng4

Affiliation:

1. Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW 2480, Australia

2. Fortescue Future Industries Pty Ltd., 160 Lakes Rd, Hazelmere, WA 6055, Australia

3. Sri Emas International School, Shah Alam 40000, Selangor, Malaysia

4. College of Engineering, Design and Physical Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK

Abstract

Piezoelectric energy harvesting systems have been drawing the attention of the research community over recent years due to their potential for recharging/replacing batteries embedded in low-power-consuming smart electronic devices and wireless sensor networks. However, conventional linear piezoelectric energy harvesters (PEH) are often not a viable solution in such advanced practices, as they suffer from a narrow operating bandwidth, having a single resonance peak present in the frequency spectrum and very low voltage generation, which limits their ability to function as a standalone energy harvester. Generally, the most common PEH is the conventional cantilever beam harvester (CBH) attached with a piezoelectric patch and a proof mass. This study investigated a novel multimode harvester design named the arc-shaped branch beam harvester (ASBBH), which combined the concepts of the curved beam and branch beam to improve the energy-harvesting capability of PEH in ultra-low-frequency applications, in particular, human motion. The key objectives of the study were to broaden the operating bandwidth and enhance the harvester’s effectiveness in terms of voltage and power generation. The ASBBH was first studied using the finite element method (FEM) to understand the operating bandwidth of the harvester. Then, the ASBBH was experimentally assessed using a mechanical shaker and real-life human motion as excitation sources. It was found that ASBBH achieved six natural frequencies within the ultra-low frequency range (<10 Hz), in comparison with only one natural frequency achieved by CBH within the same frequency range. The proposed design significantly broadened the operating bandwidth, favouring ultra-low-frequency-based human motion applications. In addition, the proposed harvester achieved an average output power of 427 μW at its first resonance frequency under 0.5 g acceleration. The overall results of the study demonstrated that the ASBBH design can achieve a broader operating bandwidth and significantly higher effectiveness, in comparison with CBH.

Funder

Southern Cross University, Australia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3