Characterization of Superplastic Deformation Behavior for a Novel Al-Mg-Fe-Ni-Zr-Sc Alloy: Arrhenius-Based Modeling and Artificial Neural Network Approach

Author:

Mosleh Ahmed O.ORCID,Kotov Anton D.ORCID,Kishchik Anna A.,Rofman Oleg V.,Mikhaylovskaya Anastasia V.

Abstract

The application of superplastic forming for complex components manufacturing is attractive for automotive and aircraft industries and has been of great interest in recent years. The current analytical modeling theories are far from perfect in this area, and the results deduced from it characterize the forming conditions insufficiently well; therefore, successful numerical modeling is essential. In this study, the superplastic behavior of the novel Al-Mg-Fe-Ni-Zr-Sc alloy with high-strain-rate superplasticity was modeled. An Arrhenius-type constitutive hyperbolic-sine equation model (ACE) and an artificial neural network (ANN) were developed. A comparative study between the constructed models was performed based on statistical errors. A cross validation approach was utilized to evaluate the predictability of the developed models. The results revealed that the ACE and ANN models demonstrated strong workability in predicting the investigated alloy’s flow stress, whereas the ACE approach exhibited better predictability than the ANN.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3