Characterization of a Human In Vitro Intestinal Model for the Hazard Assessment of Nanomaterials Used in Cancer Immunotherapy

Author:

Gibb MatthewORCID,Pradhan Sahar H.ORCID,Mulenos Marina R.ORCID,Lujan HenryORCID,Liu James,Ede James D.ORCID,Shatkin Jo Anne,Sayes Christie M.

Abstract

There is momentum in biomedical research to improve the structure and function of in vitro intestinal models that better represent human biology. To build a more comprehensive model, three human cell-types were co-cultured and characterized: i.e., HT29-MTX (intestinal mucous-producing goblet cells), Caco-2 (colon epithelial cells), and Raji B (lymphocytes). Raji B cells transformed a subpopulation of Caco-2 epithelial cells into phagocytic and transcytotic immune-supporting microfold cells (M-cells). A suite of bioassays was implemented to investigate steady-state barrier integrity and cellular communication. The model demonstrated a potentiating effect in metabolism and pro-inflammatory markers. Barrier integrity and cell seeding density seem to play a role in the reliability of endpoint readouts. Microscopic analysis elucidated the importance of multi-cell biomimicry. The data show that monocultures do not have the same characteristics inherent to triple cell culture models. Multiple cell types in an in vitro model produce a better representation of an intact organ and aid in the ability to assess immunomodulatory effects of nanomaterials designed for cancer theranostics after ingestion. As many national and international agencies have stressed, there is a critical need to improve alternative-to-animal strategies for pharmaceuticals in an effort to reduce animal testing.

Funder

P3Nano

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3