Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN Method: A Case Study of Xiamen City, China

Author:

Shrestha SabitaORCID,Cui Shenghui,Xu Lilai,Wang Lihong,Manandhar Bikram,Ding Shengping

Abstract

Rapid urban development results in visible changes in land use due to increase in impervious surfaces from human construction and decrease in pervious areas. Urbanisation influences the hydrological cycle of an area, resulting in less infiltration, higher flood peak, and surface runoff. This study analysed the impact of land use change due to urbanisation on surface runoff, using the geographic information system (GIS)-based soil conservation service curve number (SCS–CN) method, during the period of rapid urban development from 1980 to 2015 in Xiamen, located in south-eastern China. Land use change was analysed from the data obtained by classifying Landsat images from 1980, 1990, 2005, and 2015. Results indicated that farmland decreased the most by 14.01%, while built-up areas increased the most by 15.7%, from 1980 to 2015. Surface runoff was simulated using the GIS-based SCS–CN method for the rainfall return periods of 5, 10, 20, and 50 years. The spatial and temporal variation of runoff was obtained for each land use period. Results indicate that the increase in surface runoff was highest in the period of 1990–2005, with an increase of 10.63%. The effect of urbanisation can be realised from the amount of runoff, contributed by built-up land use type in the study area, that increased from 14.2% to 27.9% with the rise of urban expansion from 1980 to 2015. The relationship between land use and surface runoff showed that the rapid increase in constructed land has significantly influenced the surface runoff of the area. Therefore, the introduction of nature-based solutions such as green infrastructure could be a potential solution for runoff mitigation and reducing urban flood risks in the context of increasing urbanization.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3