Impact of Urbanization-Driven Land Use Changes on Runoff in the Upstream Mountainous Basin of Baiyangdian, China: A Multi-Scenario Simulation Study

Author:

Gong Yuan12ORCID,Geng Xin12,Wang Ping1ORCID,Hu Shi1,Wang Xunming12

Affiliation:

1. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Urbanization in the Haihe River Basin in northern China, particularly the upstream mountainous basin of Baiyangdian, has significantly altered land use and runoff processes. The runoff is a key water source for downstream areas like Baiyangdian and the Xiong’an New Area, making it essential to understand these changes’ implications for water security. However, the exact implications of these processes remain unclear. To address this gap, a simulation framework combining SWAT+ and CLUE-S was used to analyze runoff responses under different land use scenarios: natural development (ND), farmland protection (FP), and ecological protection (EP). The model simulation results were good, with NSE above 0.7 for SWAT+. The Kappa coefficient for CLUE-S model validation was 0.83. The further study found that from 2005 to 2015, urban construction land increased by 11.50 km2 per year, leading to a 0.5–1.3 mm rise in annual runoff. Although urban expansion continued, the other scenarios, which emphasized farmland and forest preservation, slowed this growth. Monthly runoff changes were most significant during the rainy season, with annual runoff in ND, FP, and EP varying by 8.9%, 10.9%, and 7.7%, respectively. While the differences in annual runoff between scenarios were not dramatic, these findings provide a theoretical foundation for future water resource planning and management in the upstream mountainous area of Baiyangdian and offer valuable insights for the sustainable development of Xiong’an New Area. Additionally, these results contribute to the broader field of hydrology by highlighting the importance of considering multiple land use scenarios in runoff change analysis.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3