Land-Use and Land-Cover Changes in Dong Trieu District, Vietnam, during Past Two Decades and Their Driving Forces

Author:

Vu Thi-Thu,Shen YuanORCID

Abstract

Land-use and land-cover (LULC) change analyses are useful in understanding the changes in our living environments and their driving factors. Modeling changes of LULC in the future, together with the driving factors derived through analyzing the trends of past LULC changes, bring the opportunity to assess and orientate the current and future land-use policies. As the entryway of Quang Ninh province, Vietnam, Dong Trieu locale has experienced significant LULC changes during the past two decades. In this study, the spatial distribution of six Level I LULC classes, forest, cropland, orchards, waterbody, built-up, and barren land, in Dong Trieu district at 2000, 2010, and 2019 were obtained from Landsat imageries by maximum likelihood technique. The most significant changes observed over the past twenty years are a decrease of barren land (9.1%) and increases of built-up (8.1%) and orchards (6.8%). Driving factor analysis indicated that the changes of cropland and built-up were dependent on distance from road (DFR), distance from main road (DFMR), distance from urban (DFU), distance from water (DFW), elevation, slope, and population density. The changes of forest were dependent on all the driving forces listed above, except DFMR. The orchards mainly appeared near the high-population-density area. The transformation of the waterbody was affected by geography (elevation and slope) and population density. The higher the population density, the less barren the land would appear.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Reference57 articles.

1. Urbanizationhttps://ourworldindata.org/urbanization

2. Dynamics of Land-Use and Land-Cover Change in Tropical Regions

3. Detecting forest canopy change due to insect activity using Landsat MSS;Nelson;Photogramm. Eng. Remote Sens.,1983

4. Review Article Digital change detection techniques using remotely-sensed data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3