Machine-Learning-Based Approach to Optimize CO2-WAG Flooding in Low Permeability Oil Reservoirs

Author:

Gao Ming12,Liu Zhaoxia12,Qian Shihao3ORCID,Liu Wanlu12,Li Weirong3,Yin Hengfei12,Cao Jinhong12

Affiliation:

1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

2. State Key Laboratory of Enhanced Oil and Gas Recovery, Beijing 100083, China

3. Department of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China

Abstract

One of the main applications of carbon capture, utilization, and storage (CCUS) technology in the industry is carbon-dioxide-enhanced oil recovery (CO2-EOR). However, accurately and rapidly assessing their application potential remains a major challenge. In this study, a numerical model of the CO2-WAG technique was developed using the reservoir numerical simulation software CMG (Version 2021), which is widely used in the field of reservoir engineering. Then, 10,000 different reservoir models were randomly generated using the Monte Carlo method for numerical simulations, with each having different formation physical parameters, fluid parameters, initial conditions, and injection and production parameters. Among them, 70% were used as the training set and 30% as the test set. A comprehensive analysis was conducted using eight different machine learning regression methods to train and evaluate the dataset. After evaluation, the XGBoost algorithm emerged as the top-performing method and was selected as the optimal approach for the prediction and optimization. By integrating the production prediction model with a particle swarm optimizer (PSO), a workflow for optimizing the CO2-EOR parameters was developed. This process enables the rapid optimization of the CO2-EOR parameters and the prediction of the production for each period based on cumulative production under different geological conditions. The proposed XGBoost-PSO proxy model accurately, reliably, and efficiently predicts production, thereby making it an important tool for optimizing CO2-EOR design.

Funder

Major Science and Technology project of the CNPC in China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3