The Tip Clearance Cavitation Mechanism of a High-Speed Centrifugal Pump with a Splitter-Bladed Inducer

Author:

Guo XiaomeiORCID,Yang Shidong,Li XiaojunORCID,Shi Liang,Hua Ertian,Zhu Zuchao

Abstract

For a high-speed centrifugal pump, cavitation occurs easily. To equip a high-performance splitter-bladed inducer upstream of the pump is an effective method to suppress cavitation. In this paper, an external characteristics experiment of the high-speed centrifugal pump with a splitter-bladed inducer is carried out, and the corresponding numerical calculations are completed. The research shows that the results of the numerical calculation are credible. Numerical cavitation calculations under eight different tip clearance conditions are carried out. First, it is found that the tip clearance (TC) has a certain impact on the head of the centrifugal pump. When TC is in a small range, the clearance leakage is small, and the impact on the head of the pump is not so obvious, which can give the pump a higher performance. Second, it is found that TC has a certain influence on the static pressure distribution in the cascade passage of the splitter-bladed inducer. When TC is in a certain range, the increasement in TC will aggravate the cavitation at the suction surface of the long blades near the inlet. When it exceeds the certain range, it will cause cavitation at the outlet of the inducer. At last, it is found that the cavitation’s severity and position of the inducer are closely related to TC. TC affects the magnitude and position of vorticity in the inducer’s passage. In this paper the flow mechanism of TC is revealed, and its research results can provide theoretical basis and technical support for the design of the tip clearance of the inducers.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3