The Influence of Tip Clearance on the Performance of a High-Speed Inducer Centrifugal Pump under Different Flow Rates Conditions

Author:

Guo XiaomeiORCID,Jiang Chongyang,Qian Heng,Zhu Zuchao

Abstract

The influence mechanism of the blade tip clearance (TC) of an inducer on the performance of a centrifugal pump at high speed was researched under different flow rate conditions in this work. An experiment on the pump’s external performance was carried out, and numerical calculation was also performed under four different TCs. The full characteristic performance curves, static pressure and pressure pulsation distributions of the pump were obtained. Through the research and analysis, it was found that the influence of the TC on the efficiency and the head of the centrifugal pump are related to the flow rate. Under the influence of a large flow rate, the increase in the TC is helpful to improve the efficiency and the head of the pump. The increase in the TC helps to weaken the gap jet effect on the inducer. The inlet jet of the inducer, caused by TC leakage, will form a low-pressure vortex zone at the inlet of the inducer. The splitter-bladed inducer’s pressure pulsation is affected by the TC. The peak pressure pulsation at the monitoring point at the short blades is larger than that at the long blades. With the increase in TC, the cavitation degree at the inlet of the long blade of the inducer is decreased, while the cavitation degree at the short blade is deepened. It is also found that the TC has little effect on the radial force of the inducer and the impeller. These results will provide the design basis for the tip clearance of an inducer.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Key Program of National Natural Science Foundation of China of Zhejiang Joint Fund

Key Re-search and Development Program of Zhejiang Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3