Abstract
This paper presents a hierarchically distributed algorithm for the execution of distribution state estimation function in active networks equipped with some phasor measurement units. The proposed algorithm employs voltage-based state estimation in rectangular form and is well-designed for large-scale active distribution networks. For this purpose, as the first step, the distribution network is supposed to be divided into some overlapped zones and local state estimations are executed in parallel for extracting operating states of these zones. Then, using coordinators in the feeders and the substation, the estimated local voltage profiles of all zones are coordinated with the local state estimation results of their neighboring zones. In this regard, each coordinator runs a state estimation process for the border buses (overlapped buses and buses with tie-lines) of its zones and based on the results for voltage phasor of border buses, the local voltage profiles in non-border buses of its zones are modified. The performance of the proposed algorithm is tested with an active distribution network, considering different combinations of operating conditions, network topologies, network decompositions, and measurement scenarios, and the results are presented and discussed.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference32 articles.
1. Two-Stage Flexibility-oriented Stochastic Energy Management Strategy for MultiMicrogrids Considering Interaction with Gas-grid;Kamrani;IEEE Trans. Eng. Manag.,2021
2. Development and Operation of Active Distribution Networks,2011
3. Characterisation and evaluation of flexibility of electrical power system
4. Power System Studies in the Clean Energy Era: From Capacity to Flexibility Adequacy Through Research and Innovation
5. Active Distribution Management System;Gholami,2021
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献