A Review on Distribution System State Estimation Algorithms

Author:

Fotopoulou MariaORCID,Petridis StefanosORCID,Karachalios Ioannis,Rakopoulos DimitriosORCID

Abstract

The modern energy requirements and the orientation towards Renewable Energy Sources (RES) integration promote the transition of distribution grids from passive, unidirectional, fossil fuel-based into active, bidirectional, environmental-friendly architectures. For this purpose, advanced control algorithms and optimization processes are implemented, the performance of which relies on the Distribution System State Estimation (DSSE). DSSE algorithms provide the Distribution System Operator (DSO) with detailed information regarding the network’s state in order to derive the optimal decisions. However, this task is quite complex as the distribution system has inherent unbalance issues, often faces lack of adequate measurements, etc. The purpose of this paper is to review the DSSE algorithms that a system can incorporate with emphasis on their particular requirements, the mathematical formulation of the problem, the analysis of the existing model-based and data-driven approaches and the recommended solutions regarding observability issues, bad data detection, and meter placement strategies. Furthermore, special attention is paid to DSSE applications, including the use cases where they can be deployed, the approaches that are usually followed, the integrated distributed power supply units, as well as their future trends and challenges, thus highlighting their business-related aspects.

Funder

European Commission’s H2020 programme, INTERPRETER

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3