Abstract
As the penetration of renewable energy sources (RESs) increases, the rate of conventional generators and the power system inertia are reduced accordingly, resulting in frequency-stability concerns. As one of the solutions, the battery-type energy storage system (ESS), which can rapidly charge and discharge energy, is utilized for frequency regulation. Typically, it is based on response-driven frequency control (RDFC), which adjusts its output according to the measured frequency. In contrast, event-driven frequency control (EDFC) involves a determined frequency support scheme corresponding to a particular event. EDFC has the advantage that control action is promptly performed compared to RDFC. This study proposes an ESS EDFC strategy that involves estimating the required operating point of the ESS according to a specific disturbance through neural-network training. When a disturbance occurs, the neural networks can estimate the proper magnitude and duration of the ESS output to comply with the frequency grid code. A simulation to validate the proposed control method was performed for an IEEE 39 bus system. The simulation results indicate that a neural-network estimation offers sufficient accuracy for practical use, and frequency response can be adjusted as intended by the system operator.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference24 articles.
1. Bloomberg News Editors China Sets New Renewables Target of 35 Percent by 2030https://www.renewableenergyworld.com/2018/09/26/china-sets-new-renewables-target-of-35-percent-by-2030/#gref
2. EU Raises Renewable Energy Targets to 32% by 2030https://www.theguardian.com/business/2018/jun/14/eu-raises-renewable-energy-targets-to-32-by-2030
3. Recommended Practice for Monitoring Electric Power Quality,1994
4. A Voltage and Frequency Droop Control Method for Parallel Inverters
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献