Enhancing the Stability of an Isolated Electric Grid by the Utilization of Energy Storage Systems: A Case Study on the Rafha Grid

Author:

Alsalman Amer S.1ORCID,Alharbi Talal1ORCID,Mahfouz Ahmed A.1ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, Qassim University, Buraydah 52571, Qassim, Saudi Arabia

Abstract

A system’s stability is affected by the generation types in the interconnected power system. For example, synchronous generators usually have high inertia sharing with the power system since they have rotating mass, and they usually have primary frequency response capability. On the other hand, renewable energy sources (RES) neither provide inertia to the system nor have a primary frequency response capability; hence, adding RES will impact the power system’s voltage, angle, and frequency stability. Battery energy storage systems (BESSs) have many applications in the future electric grid. From the stability perspective, BESSs can be used to increase the power system’s stability. A case study was conducted on the Rafha microgrid in the Kingdom of Saudi Arabia (KSA) to inspect a BESS’s influence on the Rafha microgrid’s stability and the impact of changing the BESS’s location, which might cause changes in the system stability after contingencies. In addition, we investigated which dynamic stability is affected if the BESS’s capacity changes. The microgrid is tested using contingencies that affect the system’s frequency, angle, and voltage stability using the power system simulator for engineering (PSS/E) software as a simulation platform. Finally, we investigated the technical impact of utilizing a BESS and its influence on economic operation.

Funder

Qassim University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3