Deep Q-Network for Optimal Decision for Top-Coal Caving

Author:

Yang YiORCID,Li Xinwei,Li Huamin,Li Dongyin,Yuan Ruifu

Abstract

In top-coal caving, the window control of hydraulic support is a key issue to the perfect economic benefit. The window is driven by the electro-hydraulic control system whose command is produced by the control model and the corresponding algorithm. However, the model of the window’s control is hard to establish, and the optimal policy of window action is impossible to calculate. This paper studies the issue theoretically and, based on the 3D simulation platform, proposes a deep reinforcement learning method to regulate the window action for top-coal caving. Then, the window control of top-coal caving is considered as the Markov decision process, for which the deep Q-network method of reinforcement learning is employed to regulate the window’s action effectively. In the deep Q-network, the reward of each step is set as the control criterion of the window action, and a four-layer fully connected neural network is used to approximate the optimal Q-value to get the optimal action of the window. The 3D simulation experiments validated the effectiveness of the proposed method that the reward of top-coal caving could increase to get a better economic benefit.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3