Machine Learning in Evaluating Multispectral Active Canopy Sensor for Prediction of Corn Leaf Nitrogen Concentration and Yield

Author:

Barzin Razieh,Lotfi Hossein,Varco Jac J.ORCID,Bora Ganesh C.

Abstract

Applying the optimum rate of fertilizer nitrogen (N) is a critical factor for field management. Multispectral information collected by active canopy sensors can potentially indicate the leaf N status and aid in predicting grain yield. Crop Circle multispectral data were acquired with the purpose of measuring the reflectance data to calculate vegetation indices (VIs) at different growth stages. Applying the optimum rate of fertilizer N can have a considerable impact on grain yield and profitability. The objectives of this study were to evaluate the reliability of a handheld Crop Circle ACS-430, to estimate corn leaf N concentration and predict grain yield of corn using machine learning (ML) models. The analysis was conducted using four ML models to identify the best prediction model for measurements acquired with a Crop Circle ACS-430 field sensor at three growth stages. Four fertilizer N levels from deficient to excessive in 50/50 spilt were applied to corn at 1–2 leaves, with visible leaf collars (V1–V2 stage) and at the V6–V7 stage to establish widely varying N nutritional status. Crop Circle spectral observations were used to derive 25 VIs for different growth stages (V4, V6, and VT) of corn at the W. B. Andrews Agricultural Systems farm of Mississippi State University. Multispectral raw data, along with Vis, were used to quantify leaf N status and predict the yield of corn. In addition, the accuracy of wavelength-based and VI-based models were compared to examine the best model inputs. Due to limited observed data, the stratification approach was used to split data to train and test set to obtain balanced data for each stage. Repeated cross validation (RCV) was then used to train the models. Results showed that the Simplified Canopy Chlorophyll Content Index (SCCCI) and Red-edge ratio vegetation index (RERVI) were the most effective VIs for estimating leaf N% and that SCCCI, Red-edge chlorophyll index (CIRE), RERVI, Soil Adjusted Vegetation Index (SAVI), and Normalized Difference Vegetation Index (NDVI) were the most effective VIs for predicting corn grain yield. Additionally, among the four ML models utilized in this research, support vector regression (SVR) achieved the most accurate results for estimating leaf N concentration using either spectral bands or VIs as the model inputs.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3