Spatial and Spectral Dependencies of Maize Yield Estimation Using Remote Sensing

Author:

Burglewski Nathan1ORCID,Srinivasagan Subhashree2,Ketterings Quirine2,van Aardt Jan1

Affiliation:

1. Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623, USA

2. Nutrient Management Spear Program, Cornell University, Ithaca, NY 14850, USA

Abstract

Corn (Zea mays L.) is the most abundant food/feed crop, making accurate yield estimation a critical data point for monitoring global food production. Sensors with varying spatial/spectral configurations have been used to develop corn yield models from intra-field (0.1 m ground sample distance (GSD)) to regional scales (>250 m GSD). Understanding the spatial and spectral dependencies of these models is imperative to result interpretation, scaling, and deploying models. We leveraged high spatial resolution hyperspectral data collected with an unmanned aerial system mounted sensor (272 spectral bands from 0.4–1 μm at 0.063 m GSD) to estimate silage yield. We subjected our imagery to three band selection algorithms to quantitatively assess spectral reflectance features applicability to yield estimation. We then derived 11 spectral configurations, which were spatially resampled to multiple GSDs, and applied to a support vector regression (SVR) yield estimation model. Results indicate that accuracy degrades above 4 m GSD across all configurations, and a seven-band multispectral sensor which samples the red edge and multiple near-infrared bands resulted in higher accuracy in 90% of regression trials. These results bode well for our quest toward a definitive sensor definition for global corn yield modeling, with only temporal dependencies requiring additional investigation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3