Detection of Larch Forest Stress from Jas’s Larch Inchworm (Erannis jacobsoni Djak) Attack Using Hyperspectral Remote Sensing

Author:

Xi GuilinORCID,Huang Xiaojun,Xie Yaowen,Gang Bao,Bao Yuhai,Dashzebeg Ganbat,Nanzad Tsagaantsooj,Dorjsuren Altanchimeg,Enkhnasan Davaadorj,Ariunaa Mungunkhuyag

Abstract

Detection of forest pest outbreaks can help in controlling outbreaks and provide accurate information for forest management decision-making. Although some needle injuries occur at the beginning of the attack, the appearance of the trees does not change significantly from the condition before the attack. These subtle changes cannot be observed with the naked eye, but usually manifest as small changes in leaf reflectance. Therefore, hyperspectral remote sensing can be used to detect the different stages of pest infection as it offers high-resolution reflectance. Accordingly, this study investigated the response of a larch forest to Jas’s Larch Inchworm (Erannis jacobsoni Djak) and performed the different infection stages detection and identification using ground hyperspectral data and data on the forest biochemical components (chlorophyll content, fresh weight moisture content and dry weight moisture content). A total of 80 sample trees were selected from the test area, covering the following three stages: before attack, early-stage infection and middle- to late-stage infection. Combined with the Findpeaks-SPA function, the response relationship between biochemical components and spectral continuous wavelet coefficients was analyzed. The support vector machine classification algorithm was used for detection infection. The results showed that there was no significant difference in the biochemical composition between healthy and early-stage samples, but the spectral continuous wavelet coefficients could reflect these subtle changes with varying degrees of sensitivity. The continuous wavelet coefficients corresponding to these stresses may have high potential for infection detection. Meanwhile, the highest overall accuracy of the model based on chlorophyll content, fresh weight moisture content and dry weight moisture content were 90.48%, 85.71% and 90.48% respectively, and the Kappa coefficients were 0.85, 0.79 and 0.86 respectively.

Funder

the National Natural Science Foundation of China

Inner Mongolia Autonomous Region Science and Technology Plan Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3