Infrared and Visible Image Homography Estimation Based on Feature Correlation Transformers for Enhanced 6G Space–Air–Ground Integrated Network Perception

Author:

Wang Xingyi1,Luo Yinhui1,Fu Qiang1,Rui Yun2,Shu Chang1,Wu Yuezhou1,He Zhige1,He Yuanqing1

Affiliation:

1. School of Computer Science, Civil Aviation Flight University of China, Guanghan 618307, China

2. School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China

Abstract

The homography estimation of infrared and visible images, a key technique for assisting perception, is an integral element within the 6G Space–Air–Ground Integrated Network (6G SAGIN) framework. It is widely applied in the registration of these two image types, leading to enhanced environmental perception and improved efficiency in perception computation. However, the traditional estimation methods are frequently challenged by insufficient feature points and the low similarity in features when dealing with these images, which results in poor performance. Deep-learning-based methods have attempted to address these issues by leveraging strong deep feature extraction capabilities but often overlook the importance of precisely guided feature matching in regression networks. Consequently, exactly acquiring feature correlations between multi-modal images remains a complex task. In this study, we propose a feature correlation transformer method, devised to offer explicit guidance for feature matching for the task of homography estimation between infrared and visible images. First, we propose a feature patch, which is used as a basic unit for correlation computation, thus effectively coping with modal differences in infrared and visible images. Additionally, we propose a novel cross-image attention mechanism to identify correlations between varied modal images, thus transforming the multi-source images homography estimation problem into a single-source images problem by achieving source-to-target image mapping in the feature dimension. Lastly, we propose a feature correlation loss (FCL) to induce the network into learning a distinctive target feature map, further enhancing source-to-target image mapping. To validate the effectiveness of the newly proposed components, we conducted extensive experiments to demonstrate the superiority of our method compared with existing methods in both quantitative and qualitative aspects.

Funder

National Key R&D Program of China

Science and Technology Plan Project of Sichuan Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3