Multi-Controller Deployment in SDN-Enabled 6G Space–Air–Ground Integrated Network

Author:

Liao ZhanORCID,Chen ChenORCID,Ju Ying,He Ci,Jiang Jiange,Pei Qingqi

Abstract

The space–air–ground Integrated Network (SAGIN) is considered to be a significant framework for realizing the vision of “6G intelligent connection of all things”. The birth of 6G SAGIN also brings many problems, such as ultra-dense dense networks, leading to a decrease in the efficiency of traditional flat network management, and traditional satellite networking solidified network functions, etc. Therefore, combining the 6G SAGIN network with the software-defined network (SDN) is an excellent solution. However, the satellite network topology changes dynamically and the ground user unbalanced distribution leads to the unbalanced load of the SDN controller, which further leads to the increased communication delay and throughput drop, etc. For these problems, a hierarchical multi-controller deployment strategy of an SDN-based 6G SAGIN is proposed. Firstly, the delay model of the network, the load model of the SDN controller, and a loss value as a measure of whether the network delay and controller load are optimal are defined. Then, using the distribution relationship between the SDN controller and the switch node as the solution space, and taking the loss value as the optimization goal, a multi-controller deployment strategy based on the simulated annealing algorithm is used to search for the optimal solution space. Lastly, considering the network topology changes dynamically and the SDN controller imbalance, a switch migration strategy oriented toward load balancing is proposed. We aimed to determine the controller deployment plan through the above two points, balance the controller load, and then improve the network performance. The simulation results show that the controller load is increased by about 7.71% compared to OCLDS, and the running time is increased by 17.7% compared to n-k-means.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-time Image Enhancement for Emergency Rescue Scenarios in Smart Grids;2024 IEEE 4th International Conference on Electronic Technology, Communication and Information (ICETCI);2024-05-24

2. Game theory-based switch migration strategy for satellite networks;Computer Communications;2024-05

3. Service Function Chain Deployment Algorithm Based on Deep Reinforcement Learning in Space–Air–Ground Integrated Network;Future Internet;2024-01-16

4. An In-Depth Survey on Virtualization Technologies in 6G Integrated Terrestrial and Non-Terrestrial Networks;IEEE Open Journal of the Communications Society;2024

5. Non-Fungible Token Enabled Spectrum Sharing for 6G Wireless Networks;2023 IEEE Globecom Workshops (GC Wkshps);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3