Service Function Chain Deployment Algorithm Based on Deep Reinforcement Learning in Space–Air–Ground Integrated Network

Author:

Feng Xu1,He Mengyang12,Zhuang Lei3,Song Yanrui3,Peng Rumeng1

Affiliation:

1. The School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450000, China

2. Song Shan Laboratory, Zhengzhou 450000, China

3. School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China

Abstract

SAGIN is formed by the fusion of ground networks and aircraft networks. It breaks through the limitation of communication, which cannot cover the whole world, bringing new opportunities for network communication in remote areas. However, many heterogeneous devices in SAGIN pose significant challenges in terms of end-to-end resource management, and the limited regional heterogeneous resources also threaten the QoS for users. In this regard, this paper proposes a hierarchical resource management structure for SAGIN, named SAGIN-MEC, based on a SDN, NFV, and MEC, aiming to facilitate the systematic management of heterogeneous network resources. Furthermore, to minimize the operator deployment costs while ensuring the QoS, this paper formulates a resource scheduling optimization model tailored to SAGIN scenarios to minimize energy consumption. Additionally, we propose a deployment algorithm, named DRL-G, which is based on heuristics and DRL, aiming to allocate heterogeneous network resources within SAGIN effectively. Experimental results showed that SAGIN-MEC can reduce the end-to-end delay by 6–15 ms compared to the terrestrial edge network, and compared to other algorithms, the DRL-G algorithm can improve the service request reception rate by up to 20%. In terms of energy consumption, it reduces the average energy consumption by 4.4% compared to the PG algorithm.

Funder

Science and Technology Major Project of Henan Province, China

The Scientific and technological project in Henan Province

Pre-research Project of Songshan Laboratory

Publisher

MDPI AG

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3