Investigation of the Vertical Distribution Characteristics and Microphysical Properties of Summer Mineral Dust Masses over the Taklimakan Desert Using an Unmanned Aerial Vehicle

Author:

Zhou Xiaowen1,Zhou Tian1ORCID,Fang Shuya1,Han Bisen1,He Qing2

Affiliation:

1. Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

2. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China

Abstract

Investigating the vertical distribution of mineral dust masses and their microphysical properties is crucial for accurately assessing the climate effects of dust. However, there are limited studies related to relevant in situ observations over dust source areas. In this study, the near-surface vertical characteristics (within 500 m a.g.l) of dust mass concentrations in five size fractions (PMs: TSP, PM10, PM4, PM2.5, and PM1) were investigated using an unmanned aerial vehicle (UAV) in Tazhong (TZ) in the Taklimakan Desert (TD) in July 2021. To the best of our knowledge, the vertical profiles of particle number concentration (PNC), effective radius (Reff), and volume concentration (Cv) were obtained for the first time by UAV over the TD. Four scenarios of clear sky, floating dust, blowing sand, and dust storm were selected based on the classification criteria for PMs. The PMs, PNC, Reff, and Cv decreased with height for all scenarios. From clear-sky to dust-storm scenarios PMs, PNC, Reff, and Cv in the column gradually increased. Reff (Cv) increased from 1.15 μm (0.08 μm3/μm2) to 4.53 μm (0.74 μm3/μm2). The diurnal variations of PMs, PNC, and Reff (Cv) revealed a unimodal pattern, with the peak occurring between 13:00 and 16:00, due to the evolution of wind speed and the atmospheric boundary layer in TZ. Unexpectedly, among the three postprecipitation scenarios (P1, P2, and P3), the PNC of P2 was smaller than those of P1 and P3. The Reff (Cv) for P2 was similar to or greater than that for dust storms, which may be associated with moist dust particles on the ground surface being carried into the air by wind. These investigations add to our understanding of the mineral dust vertical characteristics over the source area, and provide a meaningful reference for colocated lidar inversion and dust simulations.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

National Science Foundation of China

Gansu Provincial Science and Technology Program

Gansu Provincial Science and Technology Innovative Talent Program: High-level Talent and Innovative Team Special Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3