Zonal variations in the vertical distribution of atmospheric aerosols over the Indian region and the consequent radiative effects

Author:

Kala Nair K.,Anand Narayana SarmaORCID,Manoj Mohanan R.ORCID,Pathak Harshavardhana S.ORCID,Moorthy Krishnaswamy K.ORCID,Satheesh Sreedharan K.

Abstract

Abstract. The vertical structure of atmospheric aerosols over the Indian mainland and the surrounding oceans and its spatial distinctiveness and resultant atmospheric heating are characterised using long-term (2007–2020) satellite observations, assimilated aerosol single scattering albedo, and radiative transfer calculations. The results show strong, seasonally varying zonal gradients in the concentration and vertical extent of aerosols over the study region. Compared to the surrounding oceans, where the vertical extent of aerosols is confined within 3 km, the aerosol extinction coefficients extend to considerably higher altitudes over the mainland, reaching as high as 6 km during pre-monsoon and monsoon seasons. Longitudinally, the vertical extent is highest around 75∘ E and decreasing gradually towards either side of the study region, particularly over peninsular India. Particulate depolarisation ratio profiles affirm the ubiquity of dust aerosols in western India from the surface to nearly 6 km. While the presence of low-altitude dust aerosols decreases further east, the high-altitude (above 4 km) dust layers remain aloft throughout the year with seasonal variations in the zonal distribution over north-western India. High-altitude (around 4 km) dust aerosols are observed over southern peninsular India and the surrounding oceans during the monsoon season. Radiative transfer calculations show that these changes in the vertical distribution of aerosols result in enhanced atmospheric heating at the lower altitudes during the pre-monsoon, especially in the 2–3 km altitude range throughout the Indian region. These results have strong implications for aerosol–radiation interactions in regional climate simulations.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3