Estimating the Aboveground Biomass of Various Forest Types with High Heterogeneity at the Provincial Scale Based on Multi-Source Data

Author:

Huang Tianbao123,Ou Guanglong3ORCID,Wu Yong3,Zhang Xiaoli3,Liu Zihao3,Xu Hui3,Xu Xiongwei12,Wang Zhenghui12,Xu Can12

Affiliation:

1. Kunming General Survey of Natural Resources Center, China Geological Survey, Kunming 650111, China

2. Technology Innovation Center for Natural Ecosystem Carbon Sink, Ministry of Natural Resources, Kunming 650111, China

3. Key Laboratory of Southwest Mountain Forest Resources Conservation and Utilization, Southwest Forestry University, Ministry of Education, Kunming 650233, China

Abstract

It is important to improve the accuracy of models estimating aboveground biomass (AGB) in large areas with complex geography and high forest heterogeneity. In this study, k-nearest neighbors (k-NN), gradient boosting machine (GBM), random forest (RF), quantile random forest (QRF), regularized random forest (RRF), and Bayesian regularization neural network (BRNN) machine learning algorithms were constructed to estimate the AGB of four forest types based on environmental factors and the variables selected by the Boruta algorithm in Yunnan Province and using integrated Landsat 8 OLI and Sentinel 2A images. The results showed that (1) DEM was the most important variable for estimating the AGB of coniferous forests, evergreen broadleaved forests, deciduous broadleaved forests, and mixed forests; while the vegetation index was the most important variable for estimating deciduous broadleaved forests, the climatic factors had a higher variable importance for estimating coniferous and mixed forests, and texture features and vegetation index had a higher variable importance for estimating evergreen broadleaved forests. (2) In terms of specific model performance for the four forest types, RRF was the best model both in estimating the AGB of coniferous forests and mixed forests; the R2 and RMSE for coniferous forests were 0.63 and 43.23 Mg ha−1, respectively, and the R2 and RMSE for mixed forests were 0.56 and 47.79 Mg ha−1, respectively. BRNN performed the best in estimating the AGB of evergreen broadleaved forests; the R2 was 0.53 and the RMSE was 68.16 Mg ha−1. QRF was the best in estimating the AGB of deciduous broadleaved forests, with R2 of 0.43 and RMSE of 45.09 Mg ha−1. (3) RRF was the best model for the four forest types according to the mean values, with R2 and RMSE of 0.503 and 52.335 Mg ha−1, respectively. In conclusion, different variables and suitable models should be considered when estimating the AGB of different forest types. This study could provide a reference for the estimation of forest AGB based on remote sensing in complex terrain areas with a high degree of forest heterogeneity.

Funder

Kunming Natural Resources Survey Center of China Geological Survey

Expert Workstation of Yunnan Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3