Aboveground biomass estimation in conifer and deciduous forests with the use of a combined approach

Author:

Lovynska V.,Sytnyk S.,Stankevich S.,Holoborodko K.,Tkalich Y.,Nikovska I.,Bandura L.,Buchavuy Y.

Abstract

The complex action of environmental factors often triggers the biomass formation in forest plantations, which is crucial for carbon balance and environmental monitoring, especially in the context of climate change. In this article, we present data on the aboveground biomass accumulation for black locust and common pine (Pinus sylvestris and Robinia pseudo­acacia) as the two most common forest-forming species in the steppe zone. For this purpose, we propose a reliable approach to monitoring of aboveground forest biomass with combining Sentinel-2 multispectral imaging techniques (with L-band) and biometric processing data from coniferous and deciduous stands obtained from field surveys. We represent the results of field surveys with established indicators of aboveground biomass of forest plantations in the field experiment, which averaged 159.9 ± 9.0 t/ha in the studied region. The biometric indexes obtained from the field experiments were used to develop models for predicting biomass using the remote method. Based on the processing of satellite image data, forest vegetation indices were analysed, among which the NDVI (normalized difference vegetation index) was the best predictor to assess biomass. The multiple regression method was found to be the best for predicting and mapping the aboveground biomass in P. sylvestris and R. pseudoacacia within the studied area (RMSE – 23.46 t/ha). Based on the results obtained, we created a map of the aboveground biomass distribution in black locust and common pine stands within the studied region. We established reliable correlations between biometric parameters (mean diameter at breast height, mean height) and aboveground biomass of stands with indicators of spectral bands in satellite images. This enables us to use the constructed models to estimate the overall productivity of coniferous and deciduous forest stands for large areas.

Publisher

Oles Honchar Dnipropetrovsk National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3