Study of the Crystallographic Distortion Mechanism during the Annealing of Kaolinite

Author:

Zeng Qiuyu,Xie JunORCID,Zhou Wei,Zhu Jinbo,Liu LiangliangORCID,Yin Jianqiang,Zhu Wenliang

Abstract

The distortion process of kaolinite annealed from 25 °C to 550 °C for different holding times can be characterized using a thermogravimetric/differential scanning calorimeter (TG/DSC) for thermal analysis, X-ray diffraction (XRD) for establishing the crystal structure, the Fourier transform infrared spectrum (FTIR) for identifying the functional groups, and a scanning electron microscope (SEM) for establishing the microstructure. Dehydroxylation is the main reaction during annealing from 25 °C to 550 °C and leads to kaolinite crystal distortion. A stable crystal structure during distortion was obtained by optimizing the bulk phase with quantum chemistry. Then, the crystal structure was studied by using ab initio multiple scattering calculations for X-ray absorption of the fine structure (XAFS). The results of X-ray absorption near the edge structures (XANES) determined that peak shifts and intensity phases slightly increased. The crystal structure distortion of kaolinite during annealing can be explained by the experimental and simulation results. This work provides theoretical support for identifying kaolinite with different degrees of distortion and has the potential for further developments in coal gangue separation.

Funder

Complete set of solid waste large scale utilization technology and integrated demonstration in large coal electrochemistry base

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3