Feeding Material Identification for a Crusher Based on Deep Learning for Status Monitoring and Fault Diagnosis

Author:

Pan Yongtai,Bi YankunORCID,Zhang Chuan,Yu Chao,Li Zekui,Chen Xi

Abstract

In large coal preparation plants with a capacity of 30 million tons/year, the belt speed can reach 7 m/s and the thickness of the material layer can reach 500 mm. Therefore, in high-throughput and complex environments, the problem exists that harmful feeding materials such as iron and gangue are not easily detected, and thus fault diagnosis in the crushers lags behind. Therefore, it is necessary to extract the equipment operation signals from the noisy production environment and identify the feeding materials. Currently, there is no systematic research on signal processing and image classification of crusher feeding materials, while the convolutional neural network (CNN) is outstanding in computer vision. In this paper, sound and vibration signals of the feeding materials are denoised by spectral subtraction and transformed into feature images by continuous wavelet transforms. Then, an image classification model based on CNN is built for these feature images to study its classification mechanism and performance. The results show that the model classification accuracy is respectively 84.0%, 93.5% and 80.1% in coal–iron–wood classification, coal–iron classification, and coal–wood classification. The good classification performance for coal, iron and wood can satisfy the practical demands to remove the harmful feeding materials, which provides the core technical support for the establishment of operating status monitoring and fault diagnosis system of crushing equipment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3