Comparative Analysis of Theoretical, Observational, and Modeled Deformation of Ground Subsidence: The Case of the Alhada Pb-Zn Mine

Author:

He Liming,Cai Jiuyang,Cao Wang,Mao Yachun,Liu Honglei,Guan Kai,Zhou Yabo,Wang Yumeng,Kang Jiashuai,Wang Xingjie,Pei Panke

Abstract

In this study, the probability integral method, Synthetic Aperture Radar Interferometry (InSAR), and the Okada dislocation model were collaboratively used to analyze deformation in the Alhada Pb-Zn mine. The predicted deformation values of the subsidence centers in three subsidence areas were 107 mm, 120 mm, and 83 mm, respectively, as predicted using the probability integral method. The coherent scatterer InSAR technique was used to analyze the time-series deformation of the mining area, and the same subsidence center locations and similar deformation values were observed. The Okada dislocation model was used to invert the optimal parameters of the underground-mining ore body causing the surface subsidence, indicating that the surface subsidence is mainly caused by the mining of ore bodies in the 888 and 848 middle sections. We further simulated ground deformation using the multi-source Okada model. The results showed that the predicted and modeled deformations are highly correlated with the observed deformation. Through the analysis and comparison of the InSAR results, it was concluded that the three subsidence areas do not threaten the stability of the main buildings in the mining area. Using theoretical, observational, and modeling methods, the development and evolution of the subsidence area in mines can be established, which could provide basic data for subsidence control work and guarantee mine production safety.

Funder

National Natural Science Foundation of China

The Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3