Abstract
The environmental impact assessment of underground mining usually includes the direct effects of exploitation. These are damage to rock mass and land subsidence. Continuous dewatering of the aquifer system is, however, necessary to carry out underground mining operations. Consequently, the drainage of the aquifer system is observed at a regional scale. The spatial extent of the phenomenon is typically much wider than the direct impact of the exploitation. The research presented was, therefore, aimed at evaluating both the direct and the indirect effects of underground mining. Firstly, the spatial extent of land subsidence was determined based on the Knothe theory. Secondly, underground mining-induced drainage of the aquifers was modeled. The 3D finite-difference hydrogeological model was constructed based on the conventional groundwater flow theory. The values of model hydrogeological parameters were determined based on literature and empirical data. These data were also used for model calibration. Finally, the results of the calculations were compared successfully with the field data. The research results presented indicate that underground mining’s indirect effects cover a much larger area than direct effects. Thus, underground mining requires a broader environmental assessment. Our results can, therefore, pave the way for more efficient management of groundwater considering underground mining.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献