A “Status-Habitat-Potential” Model for the Evaluation of Plant Communities in Underwater Mining Areas via Time Series Remote Sensing Images and GEE

Author:

Mi Jiaxin1,Yang Deli12,Hou Huping1,Zhang Shaoliang23ORCID

Affiliation:

1. School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221008, China

2. Office of Undergraduate Academic Affairs, China University of Mining and Technology, Xuzhou 221008, China

3. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, China

Abstract

Mining activities are the primary human-induced disturbances on plant communities in various ecosystems, and they also are important for implementing strategies of ecological protection and restoration based on them. The effects of underwater mining on plant communities in wetland ecosystems, however, are seldom demonstrated, and it is also difficult to accurately evaluate the state of plant communities’ condition, considering the dynamic and randomness of plant communities under multiple factors, including climate, mining, and other human activities. To address these issues, a “Status-Habitat-Potential” (SHP) model has been developed, with nine indicators from the status, habitat, and potential of plant communities, and the plant communities in the Nansi Lake mining area are evaluated to illustrate the effects of underwater mining. Time series remote sensing images from Sentinel-2 and Google Earth Engine are applied. Comparison analysis, Global Moran’s index, and hot and cold analysis are also used to demonstrate the spatial characteristics of the SHP index. Results show that the SHP index varies between 0 and 0.57 and shows a high aggregation pattern according to the Global Moran’s index (0.41), with high and low values aggregating in the center of the lake and living areas, respectively. The SHP index between subsidence and contrast areas shows no significant difference (at p < 0.05), indicating little effect of mining subsidence on plant communities directly. Overall, underwater mining would not cause as obvious effects on plant communities as underground mining, but human activities accompanied by mining activities will result in the loss of plant communities around lake shores and river channels. This study put forward a new model to evaluate plant communities in terms of their status, habitat, and potential, which could also be used to illustrate other long-term effects of disturbances on plant communities.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3