3D-ResNet-BiLSTM Model: A Deep Learning Model for County-Level Soybean Yield Prediction with Time-Series Sentinel-1, Sentinel-2 Imagery, and Daymet Data

Author:

Fathi Mahdiyeh1ORCID,Shah-Hosseini Reza1ORCID,Moghimi Armin2ORCID

Affiliation:

1. School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 14399-57131, Iran

2. Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz University Hannover, Nienburger Str. 4, 30167 Hannover, Germany

Abstract

Ensuring food security in precision agriculture requires early prediction of soybean yield at various scales within the United States (U.S.), ranging from international to local levels. Accurate yield estimation is essential in preventing famine by providing insights into food availability during the growth season. Numerous deep learning (DL) algorithms have been developed to estimate soybean yield effectively using time-series remote sensing (RS) data to achieve this goal. However, the training data with short time spans can limit their ability to adapt to the dynamic and nuanced temporal changes in crop conditions. To address this challenge, we designed a 3D-ResNet-BiLSTM model to efficiently predict soybean yield at the county level across the U.S., even when using training data with shorter periods. We leveraged detailed Sentinel-2 imagery and Sentinel-1 SAR images to extract spectral bands, key vegetation indices (VIs), and VV and VH polarizations. Additionally, Daymet data was incorporated via Google Earth Engine (GEE) to enhance the model’s input features. To process these inputs effectively, a dedicated 3D-ResNet architecture was designed to extract high-level features. These enriched features were then fed into a BiLSTM layer, enabling accurate prediction of soybean yield. To evaluate the efficacy of our model, its performance was compared with that of well-known models, including the Linear Regression (LR), Random Forest (RF), and 1D/2D/3D-ResNet models, as well as a 2D-CNN-LSTM model. The data from a short period (2019 to 2020) were used to train all models, while their accuracy was assessed using data from the year 2021. The experimental results showed that the proposed 3D-Resnet-BiLSTM model had a superior performance compared to the other models, achieving remarkable metrics (R2 = 0.791, RMSE = 5.56 Bu Ac−1, MAE = 4.35 Bu Ac−1, MAPE = 9%, and RRMSE = 10.49%). Furthermore, the 3D-ResNet-BiLSTM model showed a 7% higher R2 than the ResNet and RF models and an enhancement of 27% and 17% against the LR and 2D-CNN-LSTM models, respectively. The results highlighted our model’s potential for accurate soybean yield predictions, supporting sustainable agriculture and food security.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference40 articles.

1. Soybean Crop Yield Prediction by Integration of Remote Sensing and Weather Observations;Mohite;Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.,2023

2. Comparison of Some Deep Neural Networks for Corn and Soybean Mapping in Iowa State using Landsat imagery;Fathi;Earth Obs. Geomat. Eng.,2022

3. Forecasting crop yield using remote sensing data, rural factors, and machine learning approaches;Bharadiya;J. Eng. Res. Rep.,2023

4. Muruganantham, P., Wibowo, S., Grandhi, S., Samrat, N.H., and Islam, N. (2022). A systematic literature review on crop yield prediction with deep learning and remote sensing. Remote Sens., 14.

5. Sun, J., Di, L., Sun, Z., Shen, Y., and Lai, Z. (2019). County-level soybean yield prediction using deep CNN-LSTM model. Sensors, 19.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3