County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model

Author:

Sun Jie,Di Liping,Sun Ziheng,Shen Yonglin,Lai Zulong

Abstract

Yield prediction is of great significance for yield mapping, crop market planning, crop insurance, and harvest management. Remote sensing is becoming increasingly important in crop yield prediction. Based on remote sensing data, great progress has been made in this field by using machine learning, especially the Deep Learning (DL) method, including Convolutional Neural Network (CNN) or Long Short-Term Memory (LSTM). Recent experiments in this area suggested that CNN can explore more spatial features and LSTM has the ability to reveal phenological characteristics, which both play an important role in crop yield prediction. However, very few experiments combining these two models for crop yield prediction have been reported. In this paper, we propose a deep CNN-LSTM model for both end-of-season and in-season soybean yield prediction in CONUS at the county-level. The model was trained by crop growth variables and environment variables, which include weather data, MODIS Land Surface Temperature (LST) data, and MODIS Surface Reflectance (SR) data; historical soybean yield data were employed as labels. Based on the Google Earth Engine (GEE), all these training data were combined and transformed into histogram-based tensors for deep learning. The results of the experiment indicate that the prediction performance of the proposed CNN-LSTM model can outperform the pure CNN or LSTM model in both end-of-season and in-season. The proposed method shows great potential in improving the accuracy of yield prediction for other crops like corn, wheat, and potatoes at fine scales in the future.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3